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FUNDAMENTAL FREQUENCY DETERMINATION
OF STIFFENED PLATES USING SEQUENTIAL

QUADRATIC PROGRAMMING
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Montreal, Quebec, H3G 1M8, Canada
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A novel approach for the determination of the fundamental frequency of stiffened plates
is presented. As a first stage, the governing differential equations for the structure are
derived. Then, an energy formulation is presented in which the structure is idealized as
assembled plate and stiffener elements, rigidly connected at their junctions. The non-linear
strain energy function of the assembled structure is then transformed into an unconstrained
optimization problem and Sequential Quadratic Programming (SQP) is used to determine
the magnitudes of the lowest natural frequency and the associated mode shape. Using the
described algorithm, results are presented showing the variation of the natural frequency
with plate/stiffener geometric parameters for various concentric and eccentric stiffening
configurations.
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1. INTRODUCTION

Interest in stiffened plate constructions has been wide spread in recent years in order to
achieve an economical, lightweight design of the structure. While stiffening elements add
small weight to the overall structure their influence on the total stiffness is enormous.
Stiffened plate construction is widely used in aerospace and marine structures, where
weight is of great significance, and in engineering structures such as bridge decks, box and
plate girders, . . . etc.

Introducing stiffeners to the plate complicates the analysis and several assumptions must
be made in order to facilitate a solution to the problem. The complication increases if the
stiffeners have different cross-sectional properties or are unequally spaced. Various
methods has been presented for the free vibration analysis of stiffened plates. Wah [1]
presented a procedure for the analysis of equally spaced, concentric stiffeners with identical
cross-sectional properties. Asku and Ali [2, 3] presented an alternative numerical procedure
for equally spaced stiffeners. The method is based on variational principles in conjunction
with finite difference techniques to determine the natural frequency of the structure. They
illustrated the method by the analysis of a plate with one longitudinal stiffener and a plate
with one longitudinal and one transverse stiffener. Mukhopadhyay [4, 5] presented a
semi-analytical finite difference procedure for the dynamic analysis of stiffened plates. The
governing differential equations of the structure are first developed by assuming the
stiffeners to be symmetric about the mid-plane of the plate and ignoring the torsional
stiffness of the stiffeners. A displacement function satisfying the boundary condition is then
substituted into the governing differential equations and the resulting equations are
transformed into ordinary differential equations with constant coefficients that are solved
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by a finite difference scheme. Other approximate methods have also been used by other
researchers for the analysis of such structures [e.g. Kirk [11, 12], Long [13, 14], Mead et al.
[15]]. The Finite Element [6–9] and the Finite Strip Methods [10] have also been used. Some
finite element formulations are based on the orthotropic plate model and others treat it
as a discrete model. The plate in this case is divided into subelements and the stiffeners
are treated as beam or plate elements with imposed compatibility conditions along the line
of junctions.

In this paper, an alternative numerical procedure for the free vibration analysis of
multi-stiffened plates is presented. The method takes into account the discrete nature of
the structure and is flexible for handling non-uniform stiffening systems. The objectives
of most researchers of this subject have been simply to analyze the structure rather than
study its behaviour. An objective of this paper is also to study the influence of
plate/stiffener proportions on the free vibration characteristics. This part of the
investigation will provide valuable information for design purposes.

2. THEORETICAL ANALYSIS

Consider the plate shown in Figure 1, of length a and width b, stiffened orthogonally
by NSx eccentric stiffeners parallel to the y-axis and NSy stiffeners parallel to the x-axis.
The origin of the global axis of the plate is chosen at the lower left hand corner denoted
by O. Note also that j and h are non-dimensional parameters x/a and y/b, respectively.
The distance from the global co-ordinate system to the centroid of stiffeners along the
y-axis is denoted by hi and for stiffeners along the x-axis is denoted by ji as shown in the
figure. The spacing of the stiffeners along the x-direction is also denoted by spxi,
i=1, 2, 3, . . . , NSx, and for stiffeners along the y-axis, is denoted by spyi,
i=1, 2, 3, . . . , NSy. The first letter of the superscript denotes the axis along which the
stiffeners span and the second denotes the span number from the origin O. Each stiffener
is also described by a set of geometric properties, cross-sectional area A, first moment of

Figure 1. Orthogonally stiffened plate.
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inertia Q, second moments of inertia about the major and minor axes i.e. Iy , Iz for
stiffeners along the x-axis and Ix , Iz for stiffeners along the y-axis, polar moment of
inertia I0 and torsional rigidity, J. Therefore, stiffeners along the x-axis will be identified
by superscript xi and stiffeners along the y-axis by yi, where the letter i represents the
stiffener number. As an illustration of this labelling scheme, if the plate is stiffened by three
identical equally spaced stiffeners along the x-axis and two identical equally spaced
stiffeners along the y-axis, then spx1 = spx2 = spx3 = spx4 = b/4, spy1 = spy2 = spy3 = a/3 and
Ix1

x = Ix2
x =. . . Ix3

x , . . . etc. In the present formulation, the geometric properties of the plate
will be labelled by the subscript or superscript p, e.g., thickness of the plate tp , modulus
of elasticity Ep , and the modulus of elasticity for the stiffeners will be denoted Est .

The subsequent sections describe two approaches to the free vibration analysis of
stiffened plates. The plate and stiffeners for both cases are treated as assembled plate and
beam elements. In the first approach, the governing differential equations are derived and,
in the second, an energy formulation, which will be used in subsequent sections as a
method of analysis, will be presented. The derivations are based on the following
assumptions: (1) the plate and stiffeners are made of isotropic, perfectly elastic materials;
(2) the stiffeners are rigidly connected to the plate which implies no relative rotation at
their junctions; (3) the stiffeners have open cross-section; (4) thin plate theory applies for
the plate; (5) the axial strain of the stiffeners is not affected by the restraint imposed by
the perpendicular stiffeners at their points of intersection; (6) the torsional rigidity of the
stiffeners can be estimated by St. Venant’s theory.

2.1.   

The derivation in this section is restricted to identical and equally spaced stiffeners. By
taking the midplane of the plate as the axis of reference, the resultant forces for the
assembled structure are given on p. 4, where Ap = tp /(1− n2), and Qyi denotes the first
moment of area of the stiffeners per unit width about the mid-plane of the plate and Axi

and Ayi are the cross-sectional areas of typical x-wise and y-wise stiffeners, respectively.
A list of symbols appears in the Appendix.

Note that the displacement functions W, U, and V for the plate are two-dimensional,
while for the stiffeners they are one-dimensional. Since the same functions are used for
both elements, the transformation delta functions, d(h− hi ), d(j− ji ), have been
introduced into equation (1) which evaluates the displacement function at the location of
the stiffener. For example, when this transformation function is used with the out-of-plane
displacement function, then

W(j, h) d(h− hi )=W(j, hi ), (2)

where hi is the location of the stiffener spanning along the x- or j-axis.
The moment resultants are given by equation (3) on p. 5, where Ip is the plate flexural

rigidity per unit width= t3
p /12(1− n2); the product EpIp in the conventional plate flexural

rigidity, D, is so designated since the plate and stiffeners might have different moduli of
elasticity.

Substituting equations (1) into the force equilibrium equations results in the following
pair of differential equations:

b−1$Ap +
Est

Ep
Axi d(h− hi )% 12U

1j2 +
1
2

(1+ n)Ap
12V
1j1h

+
b

2
(1− n)Ap

12U
1h2

−
b−1

a
Est

Ep
Qxi d(h− hi )

13W
1j3 = [mp +mxi

st d(h− hi )+myi
st d(j− ji )

12U
1t2 , (4)
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b$Ap +
Est

Ep
Ayi d(j− ji )% 12V

1h2 +
1
2

(1+ n)Ap
12U

1j 1h
+

b−1

2
(1− n)Ap

12V
1j2

−
b

b
Est

Ep
Qyi d(j− ji )

13W
1h3 = [mp +mxi

st d(h− hi )+myi
st d(j− ji )]

12V
1t2 , (5)

where mp and mxi
st and myi

st are the mass density of the plate and stiffeners along the x- and
y-axes, respectively, j and h are non-dimensional parameters x/a and y/b, respectively, and
b is the plate aspect ratio, a/b.

Similarly, by substituting equation (2) the moment equilibrium equation results in an
additional differential equation

$Ip +
Est

Ep
Ixi

y d(h− hi )% 14W
1j4 +2b2$Ip +

Gst

2Ep
(Jxi d(h− hi )+ Jyi d(j− ji ))% 14W

1j2 1h2

+ b4$Ip +
Est

Ep
Iyi

x d(j− ji )% 14W
1h4 − a

Est

Ep $Qxi d(h− hi )
13U
1j3 + b3Qyi d(j− ji )

13V
1h3%

=−a2 mp

Ep $a2 12W
1t2 +

mxi
st

mp
d(h− hi )0a2 12W

1t2 + Ixi
0 b21

4W
1h2t21

+
myi

st

mp
d(j− ji )0a2 12W

1t2 + Iyi
0

14W
1j2t21%, (6)

where Ixi
0 and Iyi

0 are the polar moments of inertia of x-wise and y-wise stiffeners,
respectively. Therefore, for given plate and stiffener properties, the solution of the three
coupled differential equations (4–6) gives the natural frequency for the assembly.

2.2.  

The energy method affords an alternative means of analyzing stiffened plates. In dealing
with the structure as assembled plate and beam (or stiffener) elements, the strain energy,
in the interval −tp /2Q zQ tp /2, is given by

Up =
1
2 g gV g sp

ije
p
ij dV (7)

and the strain energy of the longitudinal and transverse stiffeners is composed of two parts,
the axial and shear strain components, i.e.,

Uxi
st =

Est

2 g gV g (exi
xx)2 dV+

(GJxi)
2a g

1

0 01u

1j1
2

dj, (8)

Uyi
st =

Est

2 g gV g (eyi
yy )2 dV+

(GJyi)
2b g

1

0 01u

1h1
2

dh, (9)

where Uxi
st and Uyi

st are the strain energies of the x-wise and y-wise stiffeners, respectively.
Considering a typical ith stiffener along the x-axis, the axial strain is given by

exi
xx =(ep

xx )z= tp/2 − (z− tp /2)(d2W/dx2)− yi (d2V/dx2)+ cw (d2u/dx2), (10)
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where cw is the warping constant of the stiffener and u is the angle of rotation. The first
component is the plate strain evaluated at z= tp /2, the second and third components are
the axial strains due to bending about the major and minor axes of their local co-ordinates,
and the last component is the axial strain due to warping. The plate kinetic energy is
given by

Tp =
mpv

2

2
ab g

1

0 g
1

0 01W
1t 1 dj dh, (11)

where mp is the mass density of the plate and v is the natural frequency of the stiffened
plate.

The kinetic energy of a typical stiffener along the x-axis is given by

Txi
st =

msi
stv

2

2
Axia g

1

0 01W
1t 1

2

dj+
mxi

st v
2

2b
Ixi

0 b g
1

0 012W
1t 1h1

2

dj. (12)

Similarly, the kinetic energy of a typical stiffener along the y-axis is given by

Tyi
st =

myi
stv

2

2
Ayib g

1

0 01W
1t 1

2

dh+
myi

stv
2

2a
Iyi

0 b−1 g
1

0 012W
1t 1j1

2

dh. (13)

Equating the maximum kinetic and strain energies, the natural frequency of the assembled
structure, v, can be expressed as

v=(1/a2)4zD/mptp V. (14)

where V is a natural frequency parameter that is a function of the plate/stiffener geometric
properties and the displacement functions W, U and V.

2.3.   

The total potential of the assembled structure is composed of the strain energy of the
plate, Up , the strain energies of the stiffeners in the x- and y-directions, Uxi

st , Uyi
st and the

kinetic energy of the plate and stiffeners. The out-of- and in-plane displacements or shape
functions, W(j, h), U(j, h) and V(j, h), can be expressed as

W(j, h)= s
M1

i=1

s
N1

j=1

wijFi (j)Gj (h), U(j, h)= s
M2

m=1

s
N2

n=1

umnBm (j)Dn (h), (15, 16)

V(j, h)= s
M3

r=1

s
N3

s=1

vrsEr (j)Hs (h), (17)

where Fi (j) and Gj (h) are generalized functions that may be polynomials, harmonics · · ·
etc., satisfying out-of-plane boundary conditions at j=0, 1 and h=0, 1, respectively, and
wij are associated coefficients for the Fi (j) and Gj (h) functions. Similarly Bm (j), Dn (h),
Er (j) and Hs (h) are generalized functions that satisfy the in-plane boundary conditions and
{umn , vrs} are their corresponding amplitudes. The integers N1, M1, N2, M2, N3, M3 denote
the number of generalized functions used to define the displacement functions W(j, h),
U(j, h) and V(j, h).

The objective now is to find, for prescribed Fi (j), Gj (h), Bm (j), Dn (h), Er (j) and Hs (h),
the coefficients {wij , umn , vrs} that minimize the parameter V. Since this parameter is a
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non-linear function of these coefficients, analytical treatment of the problem becomes
difficult especially as the number of coefficients increases. In this investigation the
Sequential Quadratic Programming (SQP) algorithm has been used as the optimization
algorithm for the vibration analysis of stiffened plates. Various versions of the algorithm
can also be bound in reference [16].

The mathematical statement of the problem is

minimize V(wij , umn , vrs ), subject to &{wij}
{umn}
{vrs} '

L

E &{wij}
{umn}
{vrs} 'E &{wij}

{umn}
{vrs} '

U

, (18, 19)

where superscripts U and L denote the upper and lower bounds on these variables.
The optimization strategy of SQP for the non-linear function is performed iteratively

by generating and solving a sequence of quadratic sub-problems. The optimization strategy
is described by

{xk+1
i }= {xk

i }+ {ak}{Pk}, (20)

where the superscript denotes the iteration number and the subscript i denotes the design
variable, x is the vector containing the displacement coefficients, {wij , umn , vrs}, a is the step
size and P is the search direction.

The search direction, P, is computed in the SQP algorithm from the solution of the
quadratic, Taylor expansion of the frequency parameter V:

minimize 9V(wij , umn , vrs ) · P+ 1
2P

T · 92V(wij , umn , vrs ) · P, (21)

where 9V= 1V/1xi is the gradient of the natural frequency parameter at the kth iteration
and 92V is the matrix of the second derivative (or the Hessian matrix):

12V

1x2
1

12V

1x1 1x2
· · ·

12V

1x1 1xj

92V=G
G

G

G

G

K

k

.

.

.
.
.
.

.

.

.
.
.
.

G
G

G

G

G

L

l

. (22)

12V

1xi 1x1

12V

1xi 1x2
· · ·

12V

1xi 1xj

After obtaining the search direction from this quadratic approximation of function (21),
each iteration proceeds by determining a step length, a, that produces a sufficient decrease
in the natural frequency function V.

The minimization process is illustrated schematically in Figure 2. The process starts, at
point A, by selecting initial values for the variables x0 = {wij , umn , vrs}0. A search direction,
P0, from equation (21) and step size a0 are then computed to determine a new set of
variables {wij , umn , vrs}B that lower the natural frequency function, V, to point B, in
other words

V({wij}, {umn}, {vrs}B QV({wij}, {umn}, {vrs})A, (23)

where VA and VB are the values of the functions at points A and B. The process continues
until there is no further decrease in V, or the decrease is of negligible order, i.e.,

=V({wij}, {umn}, {vrs})k−1 −V({wij}, {umn}, {vrs})k=E e, (24)

where k is the iteration number and e is a small parameter number, chosen in this study
as 0·01.
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Figure 2. Schematic of minimization procedure of SQP.

3. RESULTS AND DISCUSSION

For a plate simply supported along four edges, admissible displacement functions
satisfying zero out of plane deflection, W, and bending moments along the four edges can
be assumed as

Fi (j)= sin (ipj), Gj (h)= sin (jph), B1(j)= (1/2− j),

Bm+1(j)= sin (mpj), D1(h)=1, (25)

Dn+1(h)= sin (nph), E1(h)=1, Er+1(j)= sin (rpj),

H1(h)= (1/2− h), Hs+1(h)= sin (sph). (26)

When using equations (25, 26), the natural frequency parameter, V, of equation (14)
becomes equation (27) on p. 10, where

P1 = s
M1

i=1

s
N1

j=1

{i4, b4j4, 2i2j2}8w
2
ij

w2
ij

w2
ij9, (28)

P2 = s
M2

m=1

s
N2

n=1 6(bp)−1, b−1m2, 1
2(1− n)bn2,

32
p2 n

mnrsn
(r2 −m2)(n2 − s2)

amrans ,
16
p2‘

(1− n)

u2
0 v2

0
u2

mn v2
rsmnrs

(m2 − r2)(s2 − n2)
amrans7g

G

G

G

G

F

f

u2
mn h

G

G

G

G

J

j

+[(bp)−2, bs2, 1
2(1− n)b−1r2, 2np−2]g

G

G

F

f
v2

rs
h
G

G

J

j

(29)

umnvrs v0u0umnvrs
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−
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+
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−
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I1 =
2
p2 u2

0 + s
M2

m=1

s
N2

n=1

s
N2

q=1

m2umnumq sin (nph) sin (qph) d(h− hi ), (30)

I2 = s
M1

i=1

s
N1

j=1

s
N1

l=1

i4 sin (jph) sin (lph) d(h− hi )wijwil , (31)

I3 = s
M1

i=1

s
N1

j=1

2ip sin ( jph) d(h− hi )u0wij + s
M1

i=1

s
N1

j=1

s
M2

m=1

s
N2

n=1

2p
i3m2

m2 − i2
ami

×sin (nph) sin (jph) d(h− hi )umnwij , (32)

I4 = s
M1

i=1

s
N1

j=1

s
N1

l=1

i2jl cos ( jph) cos (lph) d(h− hi )wijwil , (33)

I5 =
2
p2 v2

0 + s
M3

r=1

s
M3

g=1

s
N3

s=1

s2vrsvgs sin (rph) sin (gph) d(j− ji ), (34)

I6 = s
M1

i=1

s
M1

k=1

s
N1

j=1

j4 sin (ipj) sin (kpj) d(j− ji )wijwkj , (35)

I7 = s
N1

i=1

s
N1

j=1

2jp sin (ipj) d(j− ji )v0wij + s
M1

i=1

s
N1

j=1

s
M3

r=1

s
N3

s=1

2p
j 3s2

s2 − j 2 asj

×sin (ipj) sin (rpj) d(j− ji )vrswij , (36)

I8 = s
M1

i=1

s
M1

k=1

s
N1

j=1

j 2ik cos (ipj) cos (kpj) d(j− ji )wijwkj , (37)

I9 = s
M1

i=1

s
N1

j=1

s
M1

k=1

s
N1

l=1

sin ( jph) sin (lph)wijwkl d(h− hi ), (38)

I10 = s
M1

i=1

s
N1

j=1

s
M1

k=1

s
N1

l=1

cos ( jph) cos (lph)wijwkl d(h− hi ), (39)

I11 = s
M1

i=1

s
N1

j=1

s
M1

k=1

s
N1

i=1

sin (ipj) sin (kpj)wijwkl d(j− ji ), (40)

I12 = s
M1

i=1

s
N1

j=1

s
M1

k=1

s
N1

l=1

cos ( jph) cos (lph)wijwkl d(h− hi ), (41)
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Comparison of V obtained using SQP reference [17]

V
ZXXXXXXXXCXXXXXXXXV

b/a Reference [17] SQP

1 19·74 19·73
1·5 14·26 14·17
2 12·34 12·33
2·5 11·45 11·43

where ami is a parameter which equals 0 if m+ i is even and 1 otherwise; gi represents the
plate/stiffeners geometric proportions which depends upon the profile of the stiffeners.
Their magnitudes are given by

g1 Axib/D g5 Ayib/D

g2 Ixi
y /Db g6 Iyi

x /Db

g3 Axiexi/D g7 Ayieyi/D
g
G

G

G

G

F

f

h
G

G

G

G

J

j
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G
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j
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G

G
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j

g
G

G

G

G

F

f

h
G

G

G

G

J

j

g4
=Est (1/2(1+ n))(Jxi/Db)

,
g8

=Est (1/2(1+ n))(Jyi/Db)
.

dxi
1 Axi/Estbtp dyi

1 Ayi/Estbtp

dxi
2 Ixi

0 /Esta3tp dyi
2 Iyi

0 /a3tp

(42)

A computer program was developed using the energy formulation and the SQP technique,
described previously for the analysis of multi-stiffened plates. With input data describing
the plate-stiffener geometric proportions and the panel configuration, i.e., number of
longitudinal and transverse stiffeners and stiffeners spacing, the lowest natural frequency
and the associated mode shape are determined for the structure. The results of this section
are grouped into two major parts.

In the first section, the program is verified for several unstiffened and stiffened panels
that have been analyzed by other authors, using alternative numerical methods, such as
finite element, finite difference and finite strip. In the second part, the effect of the
plate/stiffener proportion on the natural frequency of the structure is investigated for
several panels.

Figure 3. Geometric details of plate with one longitudinal stiffener.
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Comparison of V obtained using SQP and references [3, 8, 7]

Figure Reference v (Hz)

3 3 254·94
8 253·6
7 257·05

Present 256·2

3.1.  

3.1.1. Example 1
As a first stage, the program was verified for unstiffened simply supported plates. The

numerical values obtained using SQP are compared with the analytical values of reference
[17] in Table 1, for four aspect ratios, b/a=1, 1·5, 2, 2·5. The values obtained using SQP
were based on 16 out-of-plane displacement coefficients. The natural frequencies are
presented in terms of the non-dimensional parameter V given by

V=va2zmptp /D , (43)

where D=Ept3
p/12(1− n2) is the plate flexural rigidity, tp is the plate thickness, mp is the

mass density, v the natural frequency in rad/s and a is the side length of plate. It can be
seen that both values are in good agreement.

3.1.2. Example 2
The plate is simply supported with one eccentric stiffener spanning the plate along the

centerline as shown in Figure 3. The moduli of elasticity of the plate and the stiffener are
Ep =Est =30×106 psi (2·07×105 N/mm2), and the mass densities are
mp =mxi

st =myi
st =0·28 lb/in3 (7·83×10−6 kg/mm3). The dimensions of the plate are

a=16 in (410 mm), b=24 in (600 mm) and the thickness tp =0·25 in (6·33 mm). The
stiffener depth hx1 =0·875 in (22·22 mm) and the thickness txi

s =0·5 in (12·7 mm). This
panel was analyzed by Mukherjee and Mukhopadhy [7] using their finite element
formulation, by Asku [3] using a finite difference formulation and by Harik and Guo [8]
using the finite element method. The panel was analyzed by SQP with 20 variables: 16
out-of-plane and four in-plane design variables. The lowest natural frequency for the
structure is shown in Table 2 and as can be seen they are in reasonable agreement.

3.1.3. Example 3
The plate is simply supported with concentric stiffening as shown in Figure 4. The plate

aspect ratio b=1 and the depth and the thickness of the stiffeners is hxi
s =4, txi

s = tp =1.
The panel was analyzed for two cases; (1) four longitudinal stiffeners
spx1 = spx2 = spx3 =24 and (2) five longitudinal stiffeners, spx1 = spx2 = spx3 = spx4 =24. In

Figure 4. Geometric details of plate with five longitudinal concentric stiffeners.
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Comparison of V obtained using SQP and reference [1]

NSx1 EIxi/Db Axi/tpb Reference [1] SQP

3 0·806 0·056 2·6 2·55
4 0·605 0·042 1·464 1·436

Table 3 a comparison is made between the numerical values obtained using SQP and those
of reference [1] for the natural frequency parameter V which is given by

V=(a/(NSx −1))2vzmptp /D , (44)

where (NSx −1) represents the number of bays. It can be seen that the values of reference
[21] and the ones obtained using SQP are in good agreement.

3.1.4. Example 4
The last verification example is a 2×2 bay continuous plate shown in Figure 5. The

line supports are placed at the locations spx1 = spy1 =0·5. This plate was analyzed by using
the finite strip method by Wu and Cheung [18] and by Koko [9] using a refined finite
element formulation. He modelled the structure by four plate elements, one for each bay
with a total of 154 degrees of freedom. The natural frequency computed in terms of the
non-dimensional parameter V is given by

V=vL2zmptp /D (45)

The structure was analyzed by SQP with 20 design variables and the lowest natural
frequencies are compared in Table 4 with the values of references [9, 18].

3.2.   / 

The objectives in this section are to study the influence of plate/stiffener proportions on
the lowest natural frequency of the assembly. Specific attention is given to the influence
of parameters of the plate and the stiffeners on the natural frequency of the assembled
structure. The behaviour, in this section, is detailed for four example panels containing:
(1) one longitudinal stiffener, (2) two longitudinal stiffeners, (3) two longitudinal and one
transverse stiffeners, and (4) three longitudinal stiffeners. The stiffener profile is chosen to
be rectangular. For eccentric stiffening, the values of the parameters g1–4, dxi

1 and dxi
2 of

equations (42) for this profile become

Figure 5. Geometric details of 2×2 continuous plate.
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Comparison of V obtained using SQP and references [9, 18]

Figure Reference V

5 9 20·05
18 19·74

Present 19·6
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a 01+
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tp 1
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%
(46)

where a, b and tp are the length, width and thickness of the plate, and hxi, txi
s are the depth

and the thickness of stiffeners along the x-axis. The values for the concentric configuration
can be obtained by similar substitution. Also in the present analysis, the b/tp ratio is chosen
to be 150. Moreover, the Axi/btp =Ayi/btp ratios are kept to 0·1 and the plate aspect ratio
at b=1 and the warping stiffness of the stiffeners are ignored for all cases.

Figure 6(a) shows the natural frequency parameter, V, versus the hx1/tp ratio for a
centrally stiffened panel. The solid curve represents the eccentric while the dashed curve
represents the concentric configuration. The solid circles are the numerical values obtained
from the analysis using SQP. Starting with an unstiffened plate with unit aspect ratio, the
natural frequency parameter V equals 19·73, and the mode shape is a half-sine wave.
Increasing hx1/tp , while setting the contribution of the torsional strain energy GJx1/Db to
zero, the natural frequency parameter, V, increases until it attains a constant value of 49·3
at hx1/tp =6·1 for the eccentric and 13·7 for the concentric configuration. At this stage, the
stiffener subdivides the plate into two sub-panels and freely rotates, since GJx1/Db=0. The

Figure 6. (a) Variation of V with hx1/tp for a plate with one longitudinal stiffener; (b) variation of V with
GJx1/Db ratio.
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EIx1/Db ratio for this hx1/tp value is about 17. The ratio hx1/tp for the concentric
configuration is larger since the axis of bending of the plate and the stiffener in this case
coincides while, for the eccentric configuration, the value of the inertia of the stiffener is
larger. The natural frequency parameter V at this stage equals 49·3 which can also be
obtained by replacing the parameter bsub by b in equation (14), i.e,.

vsub = p2(i2 + j 2b2
sub)(1/a2)zD/mptp = p2(1+1 ( 4)(1/a2)zD/mptp

=49·3(1/a2)zD/mptp =vPL . (47)

The first quantity of the above equation is the natural frequency parameter of the
sub-panel i.e., a simply supported plate along the four edges of width spx1 and bsub is the
aspect ratio of the sub-panel (a/spx1). Therefore, these values of hx1/tp are the points where
the natural frequencies of the plate and the sub-panels coincide and hence represent the
optimum values.

Now, by fixing the EIx1/Db or hx1/tp ratio at any value along the constant V=49·3 line
and increasing the torsional stiffness parameter GJx1/Db of the stiffener, a further increase
in the natural frequency parameter V can be obtained as shown in Figure 6(b). Note that
by fixing hx1/tp , tx1

s /tp needs to be increased to increase the Jx1 value of the stiffener. The
stiffener, at this stage, partially restrains the plate against rotation along b/2 until it clamps
the plate along this side and the V value becomes constant at 68 for GJx1/Db1 3·8. This
corresponds to the natural frequency of a plate with three simply supported edges and
clamped along the fourth longitudinal edge. Any further increase in tx1

s /tp produces no
further increase in the natural frequency of the plate.

To give numerical insight to the advantage of stiffened plates, assume that the modulus
of elasticity of the plate and the stiffener are Ep =Est =30×106 psi (2·07×105 N/mm2),
the mass densities mp =mxi

st =mvi
st =0·28 lb/in3 (7·83×10−6 kg/mm3) and the dimensions

of the plate are a=30 in (762 mm), b=30 in (762 mm). If one further assumes that the
natural frequency to be attained is v=266 Hz, for the unstiffened plate, the required plate
thickness to achieve this natural frequency is tp =0·5 in (12·7 mm) and thus the total
volume of material required is 450 in3 (7·4×106 mm3). By adding a stiffener along the
centerline of the plate, this natural frequency can be attained at hx1 =1·22 in (30·5 mm),
tx1
s =0·5 in (12·7 mm) and a reduced plate thickness tp of 0·2 in (5·1 mm). Thus the total
volume of the stiffened plate is 198 in3 (3·24×106 mm3). Therefore, for the same natural
frequency, the stiffened plate requires less than one half the material the unstiffened plate
requires, noting that the weight of the stiffener constitutes about 10% of the total weight
of the structure.

Figure 7 illustrates the variation of the stiffener spacing with the natural frequency
parameter V for 0Q (spx1/b)Q 1 for the eccentric configuration for EIx1/Db=20, i.e.,
hx1/tp =6·65. Note that this value of hx1/tp is along the constant V line of Figure 6. The
incremental value of spx1 was b/10. The value of GJx1/Db is taken to be zero for this case.
Note that the curve is symmetric about the centerline, spx1 = b/2. As can be seen, the best
location for the stiffener, which produces the highest V value, is at the centerline of the
plate. A possible explanation for this is that when the stiffener is off center, the plate is
divided into two sub-panels with different widths, spx1 and spx2, as shown in Figure 1. The
critical one will correspond to the larger spx1 since it will produce the smallest V value.
If, for example, the stiffener is at spx1 =0·4b, the panel with spx2 =0·6b will have a lower
natural frequency since it has a lower aspect ratio. Therefore, the largest V can be obtained
when the natural frequency of both sub-panels coincides, i.e., spx1 = spx2 =0·5.

When considering two equally spaced longitudinal stiffeners, with hx1/tp = hx2/tp and
eccentric configuration, the optimum stiffener slenderness is increased to 10·8 as shown
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Figure 7. Variation of V with the stiffener spacing, spx1/b.

in Figure 8. Note that since the parameters hx1/tp and hx2/tp are increased equally, they are
denoted by hx/tp in the graph. At this value of hx/tp , the stiffeners sub-divide the plate into
three sub-panels each of length a and width b/3. The maximum V value at this stage,
ignoring the contribution of the torsional strain energy, is 98·6. This value can also be
obtained by replacing the plate parameters, bsub and asub by b and a in equation (14), i.e.,

vsub = p2(i 2 + j 2b2
sub)

1
a2

subX D
mptp

= p2(1+ [3]2)
1
a2X D

mptp
=98·6

1
a2X D

mptp
=vPL , (48)

noting that in this case bsub =3b. It can be seen that the value of the maximum natural
frequency parameter is almost doubled by adding an additional transverse stiffener.

By adding a third transverse stiffener along the centerline of the plate, i.e., spy1 = a/2,
and increasing hx/tp and hy/tp equally, the optimum h/tp for the longitudinal and transverse
stiffeners is increased to 10·5 for the eccentric and to 21 for the concentric configuration
as shown in Figure 9. The natural frequency parameter of the structure, in this case,

Figure 8. Variation of V with hx/tp for a plate with two longitudinal stiffeners.
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Figure 9. Variation of V with h/tp for a plate with two longitudinal and one transverse stiffeners with eccentric
and concentric configurations.

increases to 128·3. At this hx/tp value, the stiffeners subdivide the plate into six sub-panels,
each with bsub =1·5. This value of V can be obtained by replacing, in equation (14), bsub

and asub by b and a to obtain

vsub = p2(i 2 + j 2b2
sub)

1
a2

subX D
mptp

= p2(1+1 ( [3
2]

2)
1

(a/2)2X D
mptp

=128·3X D
mptp

=vPL .

(49)

If the transverse stiffener is added to in the longitudinal direction instead of the
transverse direction, the maximum value of natural frequency parameter V of the structure
is 167·7, i.e., higher by about 30% from the previous configuration, as shown in Figure 10.
The amount of hx/tp to subdivide the plate into four equally sub-panels on the other hand
is 16·1 for the eccentric configuration.

Figure 10. Variation of V with hx/tp for a plate with three longitudinal stiffeners.
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4. CONCLUSIONS

The paper has presented a novel approach for the dynamic analysis of multi-stiffened
plates. The structure is idealized as assembled plate and beam elements rigidly connected
at their junctions. The strain energy functions of the plate and the stiffener elements are
transformed into an unconstrained optimization problem. Sequential quadratic
programming is then employed to find the lowest natural frequency for the assembled
structure. The method takes into account the discrete nature of the structure, flexible for
handling a non-uniform stiffening system and very efficient for linear and non-linear
vibration problems. The influence of plate-stiffener proportions on the natural frequency
is then detailed for several stiffening configurations. From these graphs it is now possible
to determine the finite values of h/tp which maximize the lowest natural frequency of the
structure.
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APPENDIX: LIST OF SYMBOLS

Ap area of the plate per unit width
Axi, Ayi areas of ith stiffener along the x- and y-axes
a, b length and width of the plate
Ep , Est Young’s moduli for the plate and the stiffeners
ex eccentricity of the stiffeners
Fi (j), Gj (h) out-of-plane displacement functions
Bm (j), Dn (h) in-plane displacement functions
Er (j), Hs (h) in-plane displacement functions
G shear modulus
hxi, hyi depth of ith stiffener along the x- and y-axes
Ip moment of inertia of the plate per unit width
Ixi

y , Iyi
x second moment of inertia about the major axis of typical x- and y-stiffener

Ixi
z , Iyi

z second moment of inertia, about the minor axis, of typical x- and y-stiffener
Ixi

0 , Iyi
0 polar moment of inertia of typical x- and y-stiffener

Jxi, Jyi torsional rigidity of typical x- and y-stiffener
Mxx , Myy , Mxy results moment components
mp mass density of the plate
mxi

st , myi
st mass densities of typical x- and y-stiffeners

Nxx , Nyy , Nxy resultant force components
Qxi, Qyi first moment of inertia of typical x- and y-stiffener
W, U, V out-of-plane and in-plane displacements
SC support condition
spxi, spyi stiffener’s spacing in the x- and y-direction
tp thickness of the plate
txi
s , tyi

s thickness of typical x- and y-stiffener
Uxi

st , Uyi
st total strain energies of stiffeners along the x- and y-axes

b the plate aspect ratio= a/b
j, h non-dimensional parameters= x/a and y/b
ep

ij strain components of the plate
exi

xx, eyi
yy axial strains of stiffeners along the x- and y-axes

sp
ij stress components of the plate

V non-dimensional natural frequency parameter
v natural frequency of the structure


